Valuing wetland ecosystem services for sustainable management of Loktak Lake, Manipur, India

Ritesh Kumar
Wetlands International – South Asia
Ritesh.kumar@wi-sa.org
Loktak Wetlands within Manipur River Basin
Loktak Wetlands within Manipur River Basin
• Floodplain wetlands extending to 469 sqkm
• Livelihood of 0.3 million people traditionally wisely used for fisheries and agriculture
• Loktak Lake largest wetland covering 61% of wetland area
• Occurrence of phumdi - characteristic feature
• Keibul Lamjao National Park (KLNP) habitat for Rucervus eldii
Developmental Planning

Regulation of hydrological regimes for flood mitigation, water for hydropower and irrigation

Hydraulic structures in MRB
Impacts on wetland system

- Catchment degradation leading to rapid soil erosion
- Loss of water holding capacity by 29% over last two decades
- Conversion of lake with fluctuating water levels into reservoir for hydropower generation
Impacts on wetland system

- **Proliferation of phumdis**

1989 (54%)
116.4 sq km / 84 sq km
217 Athaphums

1999 (59%)

2002 (74%)
134.6 sq km / 101.2 sq km
2,642 Athaphums

Communities’ adaptation to high water levels: Athaphum fishing

Number of Athaphums
1989 : 217
2002 : 2,642
2005 : 4,850
Impacts on wetland system

Impacts on lake biodiversity

8 fold increase in deer population, habitat reduced by 84%

Changes in species composition

Loss of migratory fish species
Economic Valuation

Support *mainstreaming* of Loktak ecosystem services into developmental planning processes

Highlight the **economic implications** of current resource use pattern

Provide options for *rationalizing* incentive systems supporting **sustained provision** of wetland ecosystem services
Recognizing ecosystem services

Food – Fisheries, Aquatic vegetation

Fiber for handicrafts

Water for hydropower generation

Nutrient retention

Cultural values
Valuing ecosystem services

Water use for hydropower

Water from wetland as an input to hydropower production process

\[\ln(Y) = 0.866 \ln(W) + 0.110 \ln(M) + 0.178 \ln(C) \]

- \(Y \) = hydropower production (MW)
- \(W \) = water usage (Mm\(^3\))
- \(M \) = costs of manpower (Rs.)
- \(C \) = operational costs (Rs.)

Water for hydropower production accounts for 86% of value = US$ 5.16 m per annum
Valuing ecosystem services

Nutrient retention

Replacement cost using constructed wetland technique

Area required for achieving same level of nutrient removal function = 3,100 ha

Capital cost = US$ 18,000 / ha

Operation cost = US$ 400 / ha at 1993 prices

Replacement cost = US$ 0.9 million / annum
Valuing ecosystem services

Existence Values

Willingness to pay for non-use benefits

\[\ln (\text{WTP}) = a + b_1 \ln(\text{income}) + b_2 \ln(\text{age}) + b_3 \ln(\text{HHS}ize) + b_4 \ln(\text{impact}) + b_5 (\text{change}) + b_6 (\text{pers_role}) + b_7 (\text{gov_role}) \]

Annual value = US$ 7.56 millions
• Non-use values comprise 47% of overall wetland benefits

• Water use for power generation dominates wetland uses accounting for 73% of direct benefits

• Underestimation of contribution of hydrological and ecological functions primary reason for under allocation of resources
Valuing ecosystem services

- Actual costs of water use is 400% more than present cost (Rs. 5.16 / unit against Rs. 0.96 / unit actually charged)

- Present form of water use highly unsustainable
Capturing ecosystem services

Management Action Plan of Loktak and Associated Wetlands

Ecosystem Conservation
- Catchment Management
- Water Management
- Biodiversity Conservation

Sustainable Resources Development & Livelihood Improvement
- Sustainable Fisheries Development
- Management of Aquatic vegetation and Utilization
- Ecotourism Development

Institutional Development

Community & Stakeholder Participation
Capturing ecosystem services

Conservation & Management of Loktak and Associated Wetlands

Ecosystem Conservation
- Catchment Conservation
 1. Loktak
 2. Thoubal
 3. Hairok WS

 - Phumdi Management – Loktak
 2. Selective desilting and dredging
 3. Water allocation policy

- Water Management
 1. Waterbird monitoring
 2. Capacity building

- Biodiversity Conservation
 1. Alternate home for Sanges
 2. Conservation of floristic species
 3. Re-establishment of migratory fish species

Sustainable Resources Development & Livelihood Improvement
- Fisheries Development
 1. Construction of new hatcheries around Loktak
 2. Operationalization of existing hatcheries

- Livelihood Improvement
 1. Focus on Loktak

- Ecotourism Development
 1. Focus on Pumlen, Ikop, Kharung, Waithau

STAP
- 1. Khuga WS
- 2. Irlir Lower and Upper WS
- 3. Imphal WS

LTAP
- 1. Regulator at Wangmei
- 2. Solid Waste Management
- 3. Sewage treatment

Wetlands International
Capturing ecosystem services

Water management objectives
Established through Stakeholder Meeting, March 2009

• 1: Hydropower Generation
• 2: Maintenance of KLNHP Habitat
• 3: Reduction in lake sedimentation
• 4: Providing water for irrigation
• 5: Reduction in flooding in peripheral settlements and agricultural lands
• 6: Phumdi management
• 7 and 8: Supporting fisheries (culture and capture)
• 9: Maintaining lake aesthetics for ecotourism and sports

For each, established required water regime and lake condition
Water Management Scenarios

Conflicting lake regime requirement – some need a regulated regime (hydropower), others natural fluctuation (KLN P)

Assessing options through scenarios

• 1: Mimicking natural regimes – prioritizing maintenance of ecological character

• 2: Multiple objective – ecological character, flood protection, hydropower and irrigation

• 3: Business as usual – prioritizing hydropower generation
Capturing ecosystem services

- **Scenario 3: Business as Usual**
- **Scenario 2: Multiple objective**
- **Scenario 1: Mimicking natural regime**

- Normal HEP operational maximum
- 42% phumdi grounding in KLN
- Minimum drawdown level for HEP
- 90% phumdi grounding in KLN

Water level (in m amsl)

Month: January, February, March, April, May, June, July, August, September, October, November, December
Capturing ecosystem services

ES based transfers

1: Hydropower company to lake management – sustainable water allocations

2: Catchment communities to lake management – Restricting siltation practices

3: Athaphum fishers to lake management – Restricting harmful fishing practices
Challenges

• Nested socio-ecological system

• PES/RES embedded within ecosystem management – restoration as a template

• Political connotation of ‘compensation’ – societal disincentive

• Building trust – lowering transaction costs

• Capacities
Lessons Learnt

• Economic valuation embedded within larger conservation and development context

• Adaptiveness – role of learning cycles on ecological and political time scales

• Bundled ecosystem services – stakeholder prioritization as guides to decision making

• Transformation needs time and commitment – moving out of project cycles to institutional change