Valuing benefits derived from wetland ecosystems

Introduction to Ramsar Guidelines

Ritesh Kumar, STRP Member

STRP Asia Regional Workshop Changwon, South Korea

Wetland loss and degradation – an economic perspective

 Ecosystem services not priced and reflected in decision making – (Market failure)

Agriculture produce from converted lake does not reflect the values lost due to flood protection, fisheries, biodiversity etc.

 Sectoral policies may provide incentives to activities causing ecosystem loss (Perverse incentives)

Grow more food campaigns leading to conversion of floodplains

 People who degrade are not the same whose livelihoods are affected leading to continued degradation (Unequal sharing of costs and benefits)

Deforestation in upstream catchments creating flooding downstream as wetlands loose water holding capacity

We need to make choices!

Wetland loss and degradation – an economic perspective

- Quantifying and valuation of wetland ecosystem services
- Making them comparable with the returns derived from alternative uses

Large-scale irrigation and river diversions

alter natural flow regimes, reduce downstream water availability for agriculture, and contribute to salinization through saltwater intrusion in the coastal zone.

Agricultural expansion

is often achieved by converting natural inland water systems, reducing aquatic biodiversity and natural flood control functions, and increasing soil salinity through evaporation. When accompanied by intensive use of agrochemicals, off-site pollution effects can be extensive.

Overharvesting of wild resources,

especially fish, is driven both by the subsistence needs of a growing population and by unsustainable commercial exploitation, threatening future food security and livelihoods.

Roads and flood control infrastructure

often interrupt wetland connectivity, disrupting aquatic habitat, reducing the function of wetlands to remove pollutants and absorb floodwaters, and potentially increasing the losses when high floods do occur.

Dams

interrupt the connectivity of river systems, disrupting fish spawning and migration. Dams with large reservoirs alter seasonal flood regimes and retain sediment needed to maintain the productivity of floodplain agriculture.

River channelization

and dredging for navigation reduces riverine habitat and alters flood patterns.

Forest clearing

in permanently or seasonallyinundated zones, often motivated by unsustainable aquaculture production, dramatically reduces habitat for wild aquatic organisms. In the coastal zone, it also makes the landscape much more susceptible to erosion.

Urban and industrial pollution,

when released untreated into aquatic environments, reduces water quality, affecting the diversity and abundance of aquatic organisms as well as human health.

Economic Valuation

Process of expressing value of ecosystem services in concrete

monetary terms

When does economic valuation help?

<u>Determining the value of ecosystem services</u> – What is the benefit stream that ecosystem services contribute? (Total Economic Valuation)

Impact assessment

What would be the overall economic impact of a developmental activity, say upstream hydrological regulation on wetland ecosystem services? (
Environmental Impact Assessment)

<u>Understanding tradeoffs</u>

What do alternate uses of ecosystems entail? Shrimp culture versus maintaining intact mangroves? (Multi-functional use)

Classifying wetland values

Framework for Integrated Assessment and Valuation of Wetland Services

Step 1: Policy Analysis

Defining the purpose of valuation

- O Who requires the value ?
- Which stakeholders influence the value?
- O What is the objective of valuation ?
- O What is the valuation question ?
- Ensures reflection of policy goals in valuation process

Step 2: Stakeholder analysis

Stakeholders: Person, organization or group with interest in wetlands

Varying degree of influence on wetland management

Varying degree of influence on wetland management Likely to be impacted by wetland management

- O Who would be affected by a decision ?
- What are the conflicts between stakeholders?

Step 2: Stakeholder analysis

		Degree of influence			
		High	Low		
	High	Significant loss / gains due to decisions and high power to influence	Significant loss / gains due to decisions but low power to influence		
Degree of importance		Need to represent interests +maintain strategic relationships Organized recreation industry	Need to represent interests Traditional communities dependant on wetland resources		
	Low	High power to influence but not directly affected High source of risk	No power to influence and not directly affected		
		Governmental implementing agencies	External world		

Step 3: Function analysis

- Wetland ecosystem services are dependent on functional properties of ecosystems, for example
- Biotic and abiotic interactions
- Nutrient cycles
- Food-chain dynamics

- Identification of what services are important for valuation process
- Quantification of capacities of wetlands to deliver services on sustainable basis

Step 3: Function analysis

Ecosystem Service	Indicators				
	Ecosystem function	Ecosystem state	Ecosystem performance		
Provision of freshwater	Precipitation, runoff, inflows Biotic and abiotic processes influencing water quality	Water quantity Water quality	Net water available for use		
Natural hazard mitigation	Role of ecosystems in dampening extreme events	Buffer; (mangrove) structure	Reduction of flood danger Prevented damage to infrastructure		

- Revealed preference: Observing real market behavior
- Costs based approaches: Focus on costs related to ecosystem services (damage/replacement/maintenance expenditure)
- Stated preference: Observing hypothetical market behavior
- Benefit transfer: Values imputed from an existing assessment

 Production function approach : environment as an input to production of tangible outcome

Eg. Hydropower generation in Loktak Lake, Manipur

Travel costs: Modeling travel expenses as an indicator of benefits
 Eg. Chilika Lake, India

Expressing visitation rate as a function of trip duration, trip cost per person, distance travelled, journey purpose, income, age

	Av WTP		Arri	Total
	US\$	Indian	vals	Surplus
		Rs.		(Rs.
				Millions)
Domestic		5,806	378,3	2,197.12
			70	
Foreign	2868.56	120,479	1,153	138.88
Total				2,336.00

 Hedonic approaches: Estimating values based on ecosystems as a determinant of land values / wages

Valuing urban wetlands in Perth, Australia

$$\ln(ADJSALE_i) = \beta_0 + \sum \beta_j S_{ji} + \sum \beta_k N_{ki} + \sum \beta_l W_{li} + \sum \beta_m SUB_{mi} + \varepsilon_i$$

ADJSALE = property value

S= Structural attributes

N = Neighborhood attributes

W = Wetland attributes

Sub = Suburban attributes

Presence of wetland within 1.5 km of property increases house prices by AU\$ 6976 (Tapsuwan et al, 2009)

Damage costs avoided: Estimating damages avoided by ecosystems

Hurricane Protection Function, Bhitarkanika Mangroves, Orissa, India

Average opportunity cost of saving a life by retaining mangroves was 11.7 million rupees per life saved. (Das et al, PNAS, 2009)

 Contingent valuation: Estimating willingness to pay in hypothetical markets Biodiversity values, Chilika Lake, Orissa, India

Estimating probability of paying a certain amount to a reserve fund for Chilika conservation

Probability of paying decreases with increasing WTP

Total non-use benefits estimated to be Rs. 858.78 millions (21% of overall benefits)

Benefit transfer: Using existing assessments to estimate values

TEV of wetland ecosystem services (US\$ /ha/year)

TEV of wetlands: 200 b US\$ / annum

Results based on benefit transfer from > 200 valuation studies

Step 5: Linking valuation to decision making

- a) Cost benefit analysis
- b) Cost effectiveness analysis
- c) Risk effectiveness analysis
- d) Multi criteria analysis

Cost Benefit Analysis: Mangroves versus Shrimp Culture

Understanding benefit distribution to stakeholders

(Chilika Lake, Orissa, India)

Assessing costs and benefits of restoration efforts

Questions:

- a) What is the role of economic valuation in managing your wetlands?
- b) How can we increase the utility of these guidance?
 - 1. Tools ...
 - 2. Methods...
 - 3. Case studies...
 - 4. Collaborative projects...

Real life decision making is complex

- Real-life decision making uses several forms of valuations, not merely economic valuation
 - Social valuations
 - Institutional relationships
 - Moral and ethical valuations
- Economic valuation is just <u>one</u> of the decision making tools, and therefore at the best <u>partial</u>

Good valuations need to be based on systems

understanding

 Ecosystems are complex, and so is the delivery of ecosystem services

 Relationships are not definitive, nested at multiple scales and nonlinear

 Valuation should ideally be integrated with rigorous and credible assessment processes

Economic valuation is Utilitarian thinking

- Economic valuation is a largely anthropocentric way of looking at things
- Certain things are beyond utalitarian framework
 - Culture
 - Religious systems
- Extending economic
 valuation beyond a certain
 point raises ethical questions
- For certain things, valuation is <u>not needed</u>

Economic valuation is not totally definitive

- Values need to be interpreted as a range , valuation serves to narrow the range
- Ascribed to perceptions and preferences of people
- Often not universally valid and transferable

